An Efficient Method for Computing Highly Oscillatory Physical Optics Integral

نویسندگان

  • Y. M. Wu
  • L. J. Jiang
  • W. C. Chew
چکیده

Abstract—In this work, we use the numerical steepest descent path (numerical SDP) method in complex analysis theory to calculate the highly oscillatory physical optics (PO) integral with quadratic phase and amplitude variations on the triangular patch. The Stokes’ phenomenon will occur due to various asymptotic behaviors on different domains. The stationary phase point contributions are carefully studied by the numerical SDP method and complex analysis using contour deformation. Its result agrees very well with the leading terms of the traditional asymptotic expansion. Furthermore, the resonance points and vertex points contributions from the PO integral are also extracted. Compared with traditional approximate asymptotic expansion approach, our method has significantly improved the PO integral accuracy by one to two digits (10−1 to 10−2) for evaluating the PO integral. Moreover, the computation effort for the highly oscillatory integral is frequency independent. Numerical results for PO integral on the triangular patch are given to verify the proposed numerical SDP theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physical Optics Calculation of Electromagnetic Scattering From Haack Series Nose Cone

In this paper, the physical optics method is used to study the problem of electromagnetic scattering from Haack series nose cone. First, a meshing scheme is introduced which approximates the curvature of the surface by piecewise linear functions in both axial and rotational directions. This results in planar quadrilateral patches and enables efficient determination of the illuminated region and...

متن کامل

Modified Physical Optics Approximation for RCS Calculation of Electrically Large Objects with Coated Dielectric

The Radar Cross Section of a target plays an important role in the detection of targets by radars‎. ‎This paper presents a new method to predict the bistatic and monostatic RCS of coated electrically large objects. ‎The bodies can be covered by lossy electric and/or magnetic Radar Absorbing Materials (RAMs)‎. ‎These materials can be approximated by the Fresnel reflection coefficients‎. ‎The pro...

متن کامل

Efficient quadrature rules for a class of cordial Volterra integral equations: A comparative study

‎A natural algorithm with an optimal order of convergence is proposed for numerical solution of a class of cordial weakly singular Volterra integral equations‎. ‎The equations of this class appear in heat conduction problems with mixed boundary conditions‎. ‎The algorithm is based on a representation of the solution and compound Gaussian quadrature rules with graded meshes‎. ‎A comparative stud...

متن کامل

Efficient computation of quadratic-phase integrals in optics.

We present a fast NlogN time algorithm for computing quadratic-phase integrals. This three-parameter class of integrals models propagation in free space in the Fresnel approximation, passage through thin lenses, and propagation in quadratic graded-index media as well as any combination of any number of these and is therefore of importance in optics. By carefully managing the sampling rate, one ...

متن کامل

An efficient method for the numerical solution of functional integral equations

We propose an efficient mesh-less method for functional integral equations. Its convergence analysis has been provided. It is tested via a few numerical experiments which show the efficiency and applicability of the proposed method. Attractive numerical results have been obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012